Relaxation dynamics and structural characterization of organic nanoparticles with enhanced emission.
نویسندگان
چکیده
With a reprecipitation method, we prepared fluorescent organic nanoparticles of 1,4-di[(E)-2-phenyl-1-propenyl]benzene (PPB) that feature weak emission in solution but exhibit blue-shifted absorption and strong emission as aggregates. Picosecond fluorescent transients of these PPB nanoparticles showed biexponential decay, described with a consecutive kinetic model involving two emissive states. X-ray diffraction patterns of PPB nanocrystals indicate long-range packing structures of two types, one the same as in a single crystal and the other not yet determined. PPB molecules in a crystal show an arrangement of a herringbone type with three benzene rings in a PPB unit being nearly planar and two methyl groups of the unit pointing along the same direction, in contrast to the twisted structure of an isolated PPB molecule. Fluorescence transients of PPB on a femtosecond scale indicate an efficient channel for isomerization that is activated for free PPB in solution but inhibited in PPB forming nanoparticles, demonstrating the significance of molecular geometry and twisting motions that affect the relaxation dynamics in the excited state. The versatile techniques combined in this work provide strong evidence to improve our understanding of optical properties in organic nanoparticles dependent on size.
منابع مشابه
ANALYTICAL STUDY OF EFFECT OF BILAYER INORGANIC AND ORGANIC COATING AROUND THE IRON OXIDE NANOPARTICLES ON MAGNETIC RESONANCE IMAGING CONTRAST
Background & Aims: In recent years, iron oxide nanoparticles have been used in contrast-enhanced magnetic resonance imaging for diagnosing a wide range of diseases. In order to provide biocompatibility and prevent the toxicity of the nanoparticles, using organic or inorganic coating around these nanoparticles is important for their application. The aim of this study is to investigate the effect...
متن کاملEnhanced structural, optical and antibacterial activities of Zn2SnO4 nanorods synthesized by Microwave assisted method
In this research, Zn2SnO4 nanorods were prepared and structural properties of the nanorods were characterized, developing of wide-range of the optical behavior of Zn2SnO4 nanorods and the antibacterial activity was also investigated using a microwave-assisted method. A zinc stannate (Zn2SnO4) nanorod was synthesized via facile microwave-assisted method using ammonia with cubic spinel structure....
متن کاملUltrasound-induced transformation of fluorescent organic nanoparticles from a molecular rotor into rhomboidal nanocrystals with enhanced emission.
Fluorescent organic nanoparticles (FONs) based on aggregation-induced emission (AIE) are receiving increasing attention owing to their simple preparation, enhanced optical properties, and a wide range of applications. Therefore, finding simple methods to tune the structural and emissive properties of FONs is highly desirable. In this context, we discuss the preparation of highly emissive, amorp...
متن کاملStructural, optical, thermal and Photocatalytic properties of ZnO nanoparticles of Betel Leave by using Green synthesis method
In this present study reports the green synthesis of zinc oxide nanoparticles using Betel leaf extracts and zinc acetate. The functionalization of ZnO particles through Betel leaf extract mediated bio reduction of ZnO was investigated through X-ray diffraction, Field emission scanning electron microscopy, photoluminescence, thermal gravimetric-differential thermal analysis, hexagonal shaped ZnO...
متن کاملInfluence of Interface Thermal Resistance on Relaxation Dynamics of Metal-Dielectric Nanocomposite Materials under Ultrafast Pulse Laser Excitation
Nanocomposite materials, including noble metal nanoparticles embedded in a dielectric host medium, are interesting because of their optical properties linked to surface plasmon resonance phenomena. For studding of nonlinear optical properties and/or energy transfer process, these materials may be excited by ultrashort pulse laser with a temporal width varying from some femtoseconds to some hund...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 109 28 شماره
صفحات -
تاریخ انتشار 2005